MCQ on Introduction to Trigonometry (Part 2) – Class 10 Mathematics – Chapter 8 (NCERT)

This is the Part 2 of MCQ on Introduction to Trigonometry which is the Chapter 8 of Class 10 Mathematics under NCERT Syllabus. This Part also covers MCQ on Trigonometric Ratios, Trigonometric Ratios of some Specific Angles, Trigonometric Ratios of Complementary Angles and Trigonometric Identities.

This part also consists of 20 Multiple Choice Questions (MCQ) for practice. There are four options for each question. Out of the four options, only one option is correct. Choose the correct option for all the questions and then click on the submit button to view results.

MCQ on Introduction to Trigonometry (Part 2) -  Class 10 Mathematics - Chapter 8 (NCERT)

1. 
If \[tanA=atanB\] and \[sinA=bsinB\], the the value of \[cos^2A\] is

2. 
If \[mtan30^0cot60^0=sin45^0cos45^0\], then the value of \[m\] will be

3. 
If \[\sqrt{3}cot^2\theta-4cot\theta+\sqrt{3}=0\], then the value of \[tan^2\theta+cot^2\theta\] is

4. 
If \[\sqrt{3}tan\theta=2sin\theta\], then the value of \[sin^2\theta-cos^2\theta\] will be

5. 
The value of \[\frac{sin\theta tan\theta}{1-cos\theta}+tan^2\theta-sec^2\theta\] is

6. 
If \[sin^2A=1\], then the value of \[sin^2A-cos^2A\] is

7. 
If \[cosA+cos^2A=1\], then the value of \[sin^2A+sin^4A\] is

8. 
The value of \[\frac{1-tan^245^0}{1+tan^245^0}\] is

9. 
If \[sec\theta=x+\frac{1}{4x}\], then the value of \[sec\theta+tan\theta\] is

10. 
The value of \[\frac{2tan30^0}{1+tan^230^0}\] is

11. 
If \[sin\theta-cos\theta=0\], then the value of \[sin^4\theta+cos^4\theta\] will be

12. 
If \[A, B, C\] are the angles of a \[\vartriangle ABC\], then the value of \[tan(\frac{B+C}{2})\] is

13. 
The value of \[(1+tan\theta+sec\theta)(1+cot\theta-cosec\theta)\] is

14. 
If \[tan\theta+sec\theta=l\], then the value of \[sec\theta\] is

15. 
Is \[\frac{1-sin\theta}{1+sin\theta}=sec^2\theta-tan^2\theta\]?

16. 
Is \[sin(A+B)=sinA+sinB\]?

17. 
If \[4x=cosec\theta\] and \[\frac{4}{x}=cot\theta\], then the value of \[4(x^2-\frac{1}{x^2}\] is

18. 
If \[tanA=\frac{1}{\sqrt{3}}\] and \[tanB=\sqrt{3}\], then \[tan(A+B)\] is

19. 
The value of \[\frac{1+tan^2A}{1+cot^2A}\] is

20. 
The value of \[\frac{tan30^0}{cot60^0}\] is


Name Email

I hope the part 2 of MCQ on Introduction to Trigonometry which is the Chapter 8 of Class 10 Mathematics have helped you. If you have any queries/issues related to the MCQ on Introduction to Trigonometry or any other content of this website, feel free to contact me at contact@findformula.co.in or findformualcoin@gmail.com or fill the form here.

Thank you for taking part in this MCQ.

Related Posts

4.8/5 - (23 votes)
Love this Post? Share with Friends

Leave a Comment